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We study a two-lane model of two species of particles that perform biased diffusion. Extensive numerical
simulations show that when bias q is strong enough, oppositely drifting particles form some clusters that block
each other. Coarsening of such clusters is very slow and their size increases logarithmically in time. For smaller
q, particles collapse essentially on a single cluster whose size seems to diverge at a certain value of q=qc.
Simulations show that despite slow coarsening, the model has rather large power-law cooling-rate effects. It
makes its dynamics different from glassy systems but similar to some three-dimensional Ising-type models
�gonihedric models�.
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Despite its apparent simplicity, statistical mechanics of
low-dimensional driven diffusive particle systems is still at-
tracting a considerable interest �1�. This is due to numerous
applications ranging from vehicular or pedestrian transport
�2�, to gel electrophoresis �3�, and to molecular motors �4�.
Moreover, such systems exhibit the wealth of highly non-
trivial and often surprising features. Indeed, in the steady
state of these systems we observe novel universality classes
�5�, off-critical long-range correlations �6�, or internal energy
that is a decreasing function of temperature �7�. It shows that
experience we have gained studying equilibrium systems is
not very helpful in the realm of nonequilibrium phenomena.

There is a growing evidence that dynamics of these non-
equilibrium systems is also very interesting. For example,
asymptotic cluster growth in a certain two-species model is
governed by the exponent that is twice as large as could be
�naively� predicted using Lifshitz-Slyosov theory �8�. Nucle-
ation of clusters in this model is also surprising: residence
distribution develops a peak that signals formation of a mac-
roscopic cluster, but that peak disappears, however, when the
system size becomes extremely large �9�.

For some other models Evans et al. �10� predicted that
power-law coarsening, which typically accompanies
symmetry-breaking transitions, should become logarithmi-
cally slow. However, due to numerical difficulties such a
behavior was observed only in an effective toy model. Such
a slow coarsening is one of the important ingredients of
glassy dynamics. Absence of quenched disorder means that
kinetic barriers which slow down the evolution are generated
by the dynamics of the model. A similar scenario takes place
in the so-called ordinary glasses �11�. Another important in-
gredient of glassy dynamics are very small cooling-rate ef-
fects, i.e., very slow �presumably logarithmically slow�
growth of the characteristic length scale as a function of the
inverse of the cooling rate. Some three-dimensional Ising-
type models exhibit such a behavior �12�. Although genera-
tion of barriers �even diverging ones� might lead to slow
coarsening, it does not necessarily imply small cooling-rate
effects �13�. In addition, some arguments suggest that in two-
dimensional Ising-type models thermal fluctuations should
suppress generation of energy barriers restoring fast power-
law coarsening �14�. The role of dimensionality in the glassy
dynamics is important also in off-lattice systems. Indeed, re-

cent molecular-dynamics simulations of one-, two-, three-,
and four-dimensional Lennard-Jones systems show that the
tendency to form glasses increases with dimensionality, and
in one-dimensional systems glassy transition was absent
�15�. Let us notice, however, that simulations of off-lattice
systems are computationally very demanding and it is often
mere presence or absence of hysteresis that is used to iden-
tify the glassy transition.

The main objective of the present Rapid Communication
is to check whether absence of glassy transition in one-
dimensional systems might be a property also of lattice mod-
els. Slowly coarsening driven diffusive particle systems are
good candidates for such an analysis. To examine whether
other ingredients of glassy dynamics might appear in such
low-dimensional systems it would be desirable to analyze
appropriately defined cooling rate effects. Since analytically
tractable driven diffusive models usually can be solved only
with respect to steady-state properties �16�, further under-
standing of dynamics of these systems most likely have to
rely on numerical approaches. In systems with slow dynam-
ics development of efficient computational methods is par-
ticularly important. In the present Rapid Communication, we
examine a model where two species of particles perform a
biased diffusion on a one-dimensional �two-lane� lattice.
Closely related models have already been analyzed in the
context of formation of spatial structures �17�, nucleation
kinetics, and cluster growth �8,9�, and our work contributes
to better understanding of this class of models. Our simula-
tions with an efficient algorithm clearly indicate that the re-
gime with spatial inhomogeneities is characterized by loga-
rithmically slow coarsening. However, the rather large
power-law cooling-rate effects show that phase transition
separating homogeneous and inhomogeneous phases of the
model differs from realistic glassy transition. We also discuss
similarities of the dynamics of our model and that of some
Ising-type models.

In our model there are N particles of two kinds, “positive”
and “negative,” that perform biased diffusion on a two-lane
lattice of size 2�L �all results reported in this Rapid Com-
munication are obtained for density N

2L =0.1�. Each site of the
lattice can be occupied by at most one particle, and we as-
sume that the number of positive and negative particles are
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equal. In addition, particles are exposed to “electric” field
that introduces some bias on their diffusion in the horizontal
direction. Detailed dynamics is specified below:

�i� Select randomly a particle.
�ii� Select the target site �one of the three nearest neigh-

bors of the selected particle� with probability depending on
the kind of the selected particle: for positive particles left and
right neighbors are selected with probabilities p1 and p2, re-
spectively; for negative particles these probabilities are ex-
changed �see Fig. 1�. The probability of interlane jumps p3 is
for both kinds of particles the same and all results described
in the present Rapid Communication are obtained for p3
=0.5. An important parameter of the model, which is related
with the strength of the electric field, is the bias probability q
defined using the difference of probabilities of right and left
jumps as q= 1

2 �p2− p1� and of course, p1+ p2+ p3=1. Let us
also notice that dynamics preserves CP symmetry �i.e., prob-
ability of jumping to the right for a positive particle is the
same as that of jumping to the left for a negative particle�.

�iii� Provided that the target site is empty, the selected
particle jumps to that site. Otherwise, the attempt to move
the selected particle is rejected.

Closely related models have already been analyzed by
Schmittmann et al. �8,9,17�. In their formulation of the dy-
namical rules, however, it is a lattice bond that is selected
randomly. As a result, their algorithm is efficient but only for
dense systems �when density is small there is a large prob-
ability of selecting a bond with no particles at its ends and no
moves are possible�. In our case we can ensure that each time
we select a particle. However, when large clusters of par-
ticles are formed, a lot of particles get blocked. In such a
case it is useful to keep the list of active particles �i.e., those
that can move�, and select particles only from such a list
�18�. We have to notice that since a unit of time in our model
is defined as a single, on average, update of each particle,
selecting only from the list of active particles the simulation
time t is increased by 1 /NA, where NA is the �current� num-
ber of active particles. Our algorithm was actually a hybrid
version: when the number of active particles is large, we
select a particle out of all particles, and only when it drops
below the threshold we switch to the version where we select
out of the list of active particles �as a threshold we used the
value NA=N /5�. Let us also notice that in the late-stage evo-
lution there is usually a small number of active particles and

the described algorithm is much more efficient than that
where selection is made out of all particles.

It is already known �17� that for models of this kind for
sufficiently small but positive bias q the model remains in
the homogeneous phase with a slow drift of particles �posi-
tive to the right and negative to the left�. For larger q it was
reported �17� that after some time a large cluster of particles
is formed and the drift stops. Formation of such a cluster is
illustrated in Fig. 2 that shows the time dependence of the
initially random configuration of 5�103 particles evolving
at q=0.045. Indeed, one can notice that around t=2.5�105 a
cluster is formed that grow and after t�5�105 almost all
particles collapse on that cluster.

Main results reported in the present Rapid Communica-
tion are inspired by the observation that for larger bias q
instead of forming a single cluster, the model gets trapped in
the slowly coarsening state with the wide spectrum of clus-
ters of various sizes. An example of such an evolution is
shown in Fig. 3.

To examine in more detail the coarsening we calculated
the average fraction of active particles nA=NA /N as a func-
tion of time for several values of q �Fig. 4�. Since active
particles are mainly at the border of clusters �19�, their num-
ber NA is proportional to the number of clusters and the
characteristic cluster size should scale as N /NA=1 /nA. On
the semilogarithmic plot of our data one can clearly see that
1 /nA, and thus the characteristic cluster size, after an initial
fast growth, at late stage increases logarithmically slowly in
time ��log�t��. We also measured the average size of the
maximum cluster Nmax just after the initial fast growth. Our
data �inset in Fig. 4� suggest that this quantity diverges
around q=qc�0.041.

Logarithmically slow coarsening suggests that the dynam-
ics of the model might exhibit some glassy features. Consid-
ering small- and large-q phases as analogs of high- and low-
temperature phases, respectively, one can examine evolution
of our model under continuous cooling. In our simulations
we increase q linearly in time from 0 until 0.25 as q�t�=ct,

FIG. 1. Probabilities of elementary transitions in our model. For
p2� p1 positive/negative particles are preferentially moving to the
right/left and some gridlocks might form as the one to the right.
However, collective movements of particles might create some
holes and eventually eliminate such gridlocks. Since such move-
ments are against the drive and thus are highly unlikely, the lifetime
of such gridlocks rapidly increases with their size.
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FIG. 2. The time evolution of a random initial configuration of
N=5�103 particles on a ladder of length L=25�103 and for q
=0.045. After around t=5�105 MC steps essentially all particles
form a single cluster. The configuration of every fifth particle is
recorded every 7500 MC steps.
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where c can be interpreted as a cooling rate. The average
value of nA as a function of q is shown in Fig. 5. One can
notice that for slow cooling nA rapidly decreases around q
=0.04, and such a value agrees with the divergence of maxi-
mum cluster size Nmax �inset in Fig. 4�. In glassy dynamics it
is of interest to examine the zero-temperature characteristic
length l0 and its dependence on the cooling rate. Some argu-
ments �14� and Monte Carlo simulations �20� suggest that in
glassy systems l0 should only very weakly increase with the
decreasing cooling rate. Very small dependence on the cool-
ing rate is also reported in some molecular-dynamics simu-
lations �21� as well as in some experiments �22�. Linear fit to
the average value of nA, as measured at the end of the cool-
ing, as a function of the cooling rate c suggests that nA�q
=0.25��c0.5 �inset in Fig. 5�. Such a relation would imply
that the characteristic cluster size at the end of the cooling
increases as c−0.5.

Taking into account that the model has logarithmically
slow coarsening, such a fast increase in the characteristic
length seems to be rather surprising. In our opinion, there are
two possible scenarios that might explain such a behavior.
First, there might be a regime close to the transition point
qc�q�qc� where the coarsening dynamics is much faster
�with presumably power-law coarsening�. The dominant part
of the coarsening would take place during the time spent in
that regime and power-law increase in the characteristic
length would be the expected feature. As shown by Shore et
al. �14�, similar scenario takes place in a certain three-
dimensional Ising model with next-nearest-neighbor interac-
tions. Our results on coarsening in Fig. 4 extends only up to
q=0.07, and we cannot exclude that for smaller q a power-
law coarsening would operate �i.e., qc�, if exists, should be
smaller than 0.07�. Another possibility is that the regime with
logarithmically slow coarsening extends up to the transition
point q=qc, but the dynamics at this point being sufficiently
fast to generate such a growth. Such a situation most likely
occurs in three-dimensional gonihedric Ising models and is
caused by vanishing of energy barriers precisely at the criti-
cal temperature �13�.

Although the dynamics of our model has much larger
cooling-rate effects than that expected in glasses, we cannot
exclude that some other one-dimensional system will be
more realistic with this respect. Let us notice that in three-
dimensional Ising model with four-spin �plaquette� interac-
tion, which is a particular version of the already mentioned
gonihedric model, there are very small and presumably loga-
rithmic cooling-rate effects �as well as logarithmically slow
coarsening� �12�.

In conclusions, using extensive numerical simulations we
have shown that in the two-lane two-species driven diffusive
particle model formation of clusters proceeds via logarithmi-
cally slow coarsening. Adopting phenomenology developed
for glassy systems we implemented a cooling protocol for
our model. Obtained results show that the model misses an
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FIG. 3. The time evolution of a random initial configuration of
N=5�103 particles on a ladder of length L=25�103 and for q
=0.1. The configuration of every fifth particle is recorded every 250
MC steps.
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FIG. 4. The time evolution of the inverse of the fraction of
active particles nA �semilogarithmic scale�. Simulations were made
for N=2�104 and averaged over 102 independent runs. The inset
shows the q dependence of the inverse of the maximum cluster size
Nmax. These data suggest that Nmax diverges around q=qc�0.041.
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FIG. 5. The fraction of active particles nA as a function of q
during the linear cooling with the values of cooling rate c indicated.
Results are averages over 102–104 independent runs �N=2�105�.
The inset shows the value of nA at the end of the cooling �q
=0.25� as a function of cooling rate c �log-log scale�. The dotted
line has a slope 0.5 that corresponds to nA�c0.5.
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important ingredient of glassy dynamics and despite slow
coarsening it has a rather strong power-law cooling-rate ef-
fects. Together with some molecular-dynamics simulations
of off-lattice systems �21�, our work suggests that absence of
glassy transition might be a more general feature of one-
dimensional systems. Of course, one cannot exclude that a
certain modification of our model with, e.g., different density
of particles, different concentrations of positive and negative
particles, or jumping rules without CP symmetry will behave

differently, exhibiting both slow coarsening and small
cooling-rate effects. Alternatively, there might be some more
fundamental reasons prohibiting glassy dynamics in one-
dimensional systems, and further research that would resolve
that problem, in our opinion, should be undertaken.
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